МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГОРОДСКОГО ОКРУГА ТОЛЬЯТТИ «ШКОЛА $N_{\!\!\scriptscriptstyle D}$ 90»

ПРИНЯТА Педагогическим советом МБУ «Школа № 90» Протокол № 1 от 26.08.2025г. УТВЕРЖДЕНА приказом директора от 26.08.2025г. № 1

РАБОЧАЯ ПРОГРАММА

элективного курса «Решение физических задач » для обучающихся 10-11 классов

Тольятти

Введение

Элективный курс «Готовимся к ЕГЭ по физике» является дополнением к содержанию физики базового уровня и направлен на дальнейшее совершенствование уже освоенных учащимися знаний и умений. Задачи подбираются учителем, исходя из конкретных воз- можностей.

Цели курса:

Программа

элективного курса «Готовимся к ЕГЭ по физике»

1. Пояснительная записка

- реализация программы подготовки учащихся старших классов к сдаче ЕГЭ по физике;
- развитие содержания курса физики, которое предусматривает не столько расширение теоретической части, сколько углубление его практической стороны за счет решения разнообразных задач;
- формирование и развитие у учащихся интеллектуальных и практических умений в области решения задач различной степени сложности.

Задачи курса:

- сформировать понимание сущности рассматриваемых физических явлений и применяемых физических законов;
- сформировать умения комплексного применения знаний при решении учебных теоретических и экспериментальных задач;
- способствовать интеллектуальному развитию учащихся, формированию логического мышления:
- развитие самостоятельности и личной ответственности за принятие решений;
- –приобретение опыта использования различных источников информации и информационных технологий для решения познавательных задач;
- –помощь старшеклассникам в оценке своего потенциала с точки зрения образовательной перспективы.

2. Общая характеристика курса

Данный курс связан идейно и содержательно с базовым курсом физики старшей школы и позволяет углубить и расширить знания учащихся, их умения решать задачи повышенной сложности, что особенно важно при сдаче Единого Государственного Экзамена по физике. Реализация программы подготовки учащихся к ЕГЭ осуществляется посредством повторения теоретического материала курса физики средней школы, разбора решений типовых задач из всех изучаемых разделов физики, тестов ЕГЭ и ЦТ прошлых лет и задач повы- шенной трудности, требующих комплексного применения физических знаний из различ- ных разделов школьного курса физики. В ходе обучения методам решения задач происхо- дит формирование научных знаний, получают развитие умения создавать физические и математические модели явлений и процессов, отрабатываются навыки использования основных математических приемов, поднимается на новый уровень осознанная целесообразность применения основных или производных единиц измерения физических величин. Решение задач технического и исторического содержания несет в себе воспитательные функции.

3. Место учебного курса в учебном плане

Рабочая программа элективного курса «Готовимся к ЕГЭ по физике» для 10-11 клас- сов составлена на основе программы элективного курса, разработанного Терновой Л.Н., Бурцевой Е.Н., Пивень В.А. под редакцией Касьянова В.А.,

М.:-- «Экзамен».

Рабочая программа рассчитана на 68 часов учебного времени: по 34 часа в 10 и 11классе из расчета 1 час в неделю, что соответствует учебному плану школы на 2023- 2024 учебный год. Срок реализации программы – 2 года.

4. Содержание курса «Готовимся к ЕГЭ по физике» 10 класс

I. Эксперимент - 1 ч.

Основы теории погрешностей. Погрешности прямых и косвенных измерений. Представление результатов измерений в форме таблиц и графиков.

II. Механика – 16 ч.

Кинематика поступательного движения. Уравнения движения. Графики основных кинематических параметров. Криволинейное движение.

Динамика. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжения.

Статика. Момент силы. Условия равновесия тел. Гидростатика. Движение тел со связями – приложение законов Ньютона.

Законы сохранения импульса и энергии и их совместное применение в механике. Уравнение Бернулли – приложение закона сохранения энергии в гидро- и аэродинами- ке.

III. Молекулярная физика и термодинамика –12 ч.

Статистический и динамический подход к изучению тепловых процессов. Основное уравнение МКТ газов.

Уравнение состояния идеального газа — следствие из основного уравнения МКТ. Изопроцессы. Определение экстремальных параметров в процессах, не являющихся изопроцессами. Газовые смеси. Полупроницаемые перегородки.

Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщен- ный пар.

Второй закон термодинамики, расчет КПД тепловых двигателей, круговых процессов и цикла Карно.

Поверхностный слой жидкости, поверхностная энергия и натяжение. Смачивание. Капиллярные явления. Давление Лапласа.

IV. Электродинамика (электростатика и постоянный ток) – 5 ч.

Электростатика. Напряженность и потенциал электростатического поля точечного и распределенных зарядов. Графики напряженности и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов.

Конденсаторы. Энергия электрического поля. Параллельное и последовательное соеди- нение конденсаторов. Перезарядка конденсаторов. Движение зарядов в электрическом поле. Расчет количества теплоты, выделяющегося при соединении конденсаторов.

11 класс

V. Электродинамика (Магнитное поле. Электромагнитная индукция) – 10 ч.

Постоянный ток. Закон Ома для однородного участка и полной цепи. Расчет разветвлен- ных электрических цепей. Правила Кирхгофа. Мощность электрического тока в цепях с параллельным и последовательным соединением проводников. Перезарядка конденсато- ров. Шунты и добавочные сопротивления. Нелинейные элементы в цепях постоянного то- ка.

Магнитное поле. Принцип суперпозиции магнитных полей. Силы Ампера и Лоренца. Суперпозиция электрического и магнитного полей.

Электромагнитная индукция. Применение закона электромагнитной индукции в задачах о движении металлических перемычек в магнитном поле. Самоиндукция. Энергия магнитного поля.

VI. Колебания и волны – 6 ч.

Механические гармонические колебания. Простейшие колебательные системы. Кинема- тика и динамика механических колебаний, превращения энергии. Резонанс.

Электромагнитные гармонические колебания. Колебательный контур, превращения энергии в колебательном контуре. Аналогия электромагнитных и механических колеба- ний.

Переменный ток. Резонанс напряжений и токов в цепях переменного тока. Векторные диаграммы.

Механические и электромагнитные волны. Эффект Доплера.

VII. Оптика - 7 ч.

Геометрическая оптика. Закон отражения и преломления света. Построение изображе- ний неподвижных и движущихся предметов в тонких линзах, плоских и сферических зеркалах. Оптические системы. Прохождение света сквозь призму.

Волновая оптика. Интерференция света, условия интерференционного максимума и минимума. Расчет интерференционной картины (опыт Юнга, зеркало Ллойда, зеркала, бипризма и билинза Френеля, кольца Ньютона, тонкие пленки, просветление оптики). Дифракция света. Дифракционная решетка. Дисперсия света.

VIII. Квантовая физика - 8 ч.

Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта. Применение постулатов Бора для расчета линейчатых спектров излучения и поглощения энергии водородоподобными атомами. Волны де Бройля для классической и релятивистской частиц. Атомное ядро. Закон радиоактивного распада. Применение законов сохранения заряда, массового числа, импульса и энергии в задачах о ядерных превращениях.

IX. Итоговое повторение - 3 ч.

Таблица тематического распределения часов

Номер	Разделы и темы программы	Количество
раздела		часов
Ι	Эксперимент	1
II	Механика	16
III	Молекулярная физика и термодинамика	12
IV	Электродинамика (электростатика и постоянный ток)	5
V	Электродинамика (Магнитное поле. Электромагнитная индукция)	10
VI	Колебания и волны	6
VII	Оптика	7
VIII	Квантовая физика	8
IX	Итоговое повторение	3

Формы и виды самостоятельной работы и контроля

Самостоятельная работа предусматривается в виде выполнения домашних заданий. Минимально необходимый объем домашнего задания — 5-7 задач (1-2 задачи повышен- ного уровня с кратким ответом, 1-2 задачи повышенного или высокого уровня с разверну- тым ответом, остальные задачи базового уровня.

Предусматриваются виды контроля, позволяющие оценивать динамику освоения курса учащимися и получать данные для дальнейшего совершенствования содержания курса:

- текущие десятиминутные мини-контрольные работы в форме тестовых заданий с выбором ответа (эти работы представлены в следующих пособиях: Касьянов В.А. и др., «Физика. Тетрадь для контрольных работ. Базовый уровень. 10-11 класс: тесты», «Физика. Тетрадь для контрольных работ. Профильный уровень. 10-11 класс»); —контрольные работы по окончании каждого раздела;
- итоговое тестирование в форме репетиционного экзамена.

Оценивание заданий контрольной работы: задача с выбором ответа –1 балл, задание на соответствие –1-2 балла, задача повышенного уровня сложности –2 балла, задача вы- сокого уровня – 3 балла.

Критерии оценивания контрольной работы:

- · оценка «5» 15-16 баллов
- · оценка «4» 11-14 баллов
- · оценка «3» 6-10 баллов
- · оценка «2» 0-5 балла

при подготовке вариантов контрольных работ целесообразно охватить заданиями возможно более широкий круг вопросов и на дом задать решение задач другого варианта контрольной работы.

5. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

Номер	Содержание (разделы, темы)	Коли- чество часов	Даты проведения	
урока			План	Факт
	І. Эксперимент	1		
1	Основы теории погрешностей	1		
	II. Механика	16		
2	Кинематика поступательного движения	1		
3	Уравнения движения	1		
4	Графики основных кинематических параметров	1		
5	Криволинейное движение	1		
6	Решение задач по кинематике	1		
7	Динамика. Законы Ньютона.	1		
8	Силы в механике.	1		
9	Движение связанных тел	1		
10	Решение задач по теме «Динамика»	1		
11	Статика. Условие равновесия тела.	1		
12	Центр тяжести. Виды равновесия.	1		
13	Гидростатика	1		
14	Закон сохранения импульса	1		
15	Закон сохранения механической энергии	1		
16	Решение задач по теме «Законы сохранения». Уравнение Бернулли	1		
17	Контрольная работа №1 по теме «Механика»	1		
	III. Молекулярная физика и термодинами- ка	12		
18	Основы МКТ. Газовые смеси	1		

	_		
19	Решение задач по теме «Уравнение состояния	1	
	идеального газа»		
20	Решение задач по теме «Газовые законы»	1	
21	Решение графических задач по теме «Изопро-	1	
	цессы»		
22	Определение экстремальных параметров	1	
23	Полупроницаемые перегородки	1	
24	Первый и второй закон термодинамики	1	
25	Агрегатные состояния вещества. Насыщенный пар	1	
26	Круговые процессы	1	
27	Поверхностный слой жидкости	1	
28	Гепловые двигатели.	1	
29	Контрольная работа №2 по теме «Молекулярная	1	
	физика и термодинамика»		
	Электродинамика (электростатика, посто- янный	5	
	ток)		
30	Электростатика. Конденсатор	1	
31	Решение задач по теме «Электростатика»	1	
32	Энергия взаимодействия зарядов	1	
33	Соединение конденсаторов	1	
34	Расчет количества теплоты, выделяющегося при	1	
	соединении конденсаторов		
	ИТОГО:	34час.	

11 класс

Номер	Содержание (разделы, темы)	Коли-	Даты провед	ения
урока		чество часов	План	Факт
	V. Электродинамика	10		
35	Движение электрических зарядов в электрическом поле	1		
36	Закон Ома для однородного участка и полной цепи	1		
37	Правила Кирхгофа	1		
38	Мощность электрического тока в цепях с параллельным и последовательным соединением проводников	1		
39	Перезарядка конденсаторов	1		
40	Нелинейные элементы в цепях постоянного то- ка	1		
41	Магнитное поле. Электромагнитная индукция	1		
42	Сила Ампера и сила Лоренца	1		
43	Электромагнитная индукция	1		

	Движение металлических перемычек и магнит-		
44	ном поле. Контрольная работа№1 по теме	1	
	«Электродинамика»		
	VI. Колебания и волны	6	
45	Механические колебания и волны	1	
46	Электромагнитные колебания и волны	1	
47	Электромагнитные колебания в контуре	1	
48	Превращения энергии в колебательном контуре	1	
49	Переменный ток. Резонанс напряжений и токов	1	
50	Механические и электромагнитные волны. Контрольная работа № 2 по теме «Колебания и волны»	1	
	VII. Оптика	7	
51	Законы геометрической оптики. Построение изображений	1	
52	Построение изображений в плоских зеркалах	1	
53	Построение изображений в тонких линзах и сферических зеркалах	1	
54	Оптические системы	1	
55	Волновая оптика. Расчет интерференционной картинки	1	
56	Дифракционная решетка	1	
57	Контрольная работа № 3 по теме «Оптика»	1	
	VIII. Квантовая физика	11	
58	Фотоэффект. Законы фотоэффекта	1	
59	Уравнение Эйнштейна	1	
60	Применение постулатов Бора	1	
61	Закон радиоактивного распада	1	
62	Применение законов распада в задачах о ядер- ных превращениях	1	
63	Волновые свойства частиц. Волны де Бройля	1	
64	Давление света	1	
65	Контрольная работа № 4 по теме «Квантовая физика»	1	
	IX. Итоговое повторение	3	
66	Решение типовых вариантов заданий ЕГЭ	1	
67	Решение типовых вариантов заданий ЕГЭ	1	
68	Решение типовых вариантов заданий ЕГЭ	1	
	итого:	34час.	

- 6. Учебно-методическое и материально техническое обеспечение образовательного процесса
- 1. Демидова М. Ю. ЕГЭ 2020. Банк заданий. Физика. 1000 задач. Все задания частей 1 и 2 / М. Ю. Демидова, В. А. Грибов, А. И. Гиголо. М.: Издательство «Экзамен», 2020. 430, [2] с. (Серия «ЕГЭ. Банк заданий»)
- 2. Физика. Решебник. Подготовка к ЕГЭ-2013. под ред. Л.М.Монастырского, -Ростовна Дону, Легион, 2012.
- 3. А.П. Рымкевич. Сборник задач по физике. 10-11 класс. М.: Дрофа, 2012.
- 4. ЕГЭ. Физика : типовые экзаменационные варианты : 30 вариантов / под ред. М. Ю. Демидовой. Москва: Издательство «Национальное образование», 2023. 400 с.
- 5. Н.А. Парфентьева. Сборник задач по физике. 10-11 класс: базовый и профильный уровни, М.: Просвещение, 2007.
- 6. Степанова Г.Н. Сборник задач по физике. М.: Просвещение, 1996.
- 7. Марон А.Е., Физика. Законы, формулы, алгоритмы решения задач: материалы для подготовки к единому государственному экзамену и вступительным экзаменам в ВУЗы. М.: Дрофа, 2008.
- 8. Гольдфарб Н.И. Физика: сборник задач для 9 11 кл. М.: Просвещение, 1997.
- 9. Орлов В. Л., Ханнанов Н. К., Никифоров Г. Г. «Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика», М., Интеллект- Центр, 2011 г.

Материально-техническое обеспечение образовательного процесса Кабинет физики, компьютер, мультимедийная система, лабораторное и демонстраци- онное оборудование

[&]quot;Документ утвержден простой ЭЦП руководителя Учреждения"