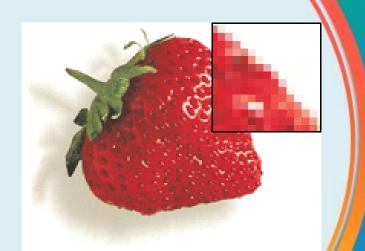


Работу выполнила: Доронина О.В. МБУ «Школа №90 г. Тольяти»

Компьютерная графика

Раздел информатики, который изучает средства и способы создания и обработки графических изображений, средствами компьютерной техники

Может ли қомпьютер заменить художника?



Растровая графика

Основным (наименьшим) элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселом. Каждый пиксел растрового изображения имеет свойства: размещение и цвет. Чем больше количество пикселей и чем меньше их размеры, тем лучше выглядит изображение.

Преимущества растровой графики.

- Простота получения для довольно сложных объектов (сканер, цифровая камера).
- «Фотореалистичность».
- Стандартизованность форматов файлов.
- Крайне широкая распространенность, как в компьютерных технологиях, так и в полиграфии.
- Высокая скорость обработки сложных изображений, если не нужно масштабирование.
- Реализованы аппаратные механизмы ввода (оцифровки), в том числе и автоматические: сканер, фото- и видеокамера.

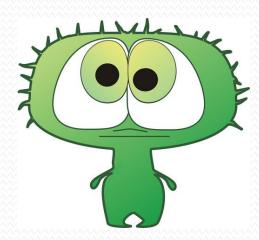
Недостатки растровой графики.

- Большой размер файла, тесно связанный с качеством и никак не зависящий от изображенных объектов.
- Полная «необратимость» редактирования.
- Фиксированность качества, определяемая разрешением.
- Слишком сложно рисование от руки.
- Относительная невозможность масштабирования (без потерь).
- Невозможность поворота без искажений на угол, отличающийся от 90°.
- Сложность редактирования деталей.
- Ограниченность использования текста и векторных объектов.

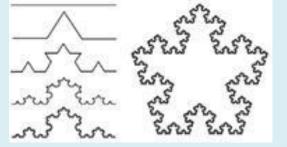
• Крайняя сложность векторизации. Условные исключения: OCR и векторизация чертежей.

Векторная графика

способ представления объектов и изображений в компьютерной графике, основанный на математическом описании элементарных геометрических объектов, обычно называемых примитивами, таких как: точки, линии, сплайны, кривые Безье, круги и окружности, многоугольники. Объекты векторной графики являются графическими изображениями математических объектов.


Преимущества векторного изображения.

- Полная и сравнительно простая редактируемость, в том числе отдельных объектов.
- Распечатка и отображение с максимально возможным качеством (разрешением устройства).
- Произвольная масштабируемость без потери качества и изменения размера файла.
- Небольшой размер файла.
- Возможная «прозрачность» при вставке на страницу.
- Редактируемый текст с произвольным размещением.
- Возможность преобразования текста в векторные кривые.
- Возможность простого преобразования в растровый формат с любым разрешением.
- Незаменимость для создания шрифтов.


Недостатки векторной графики

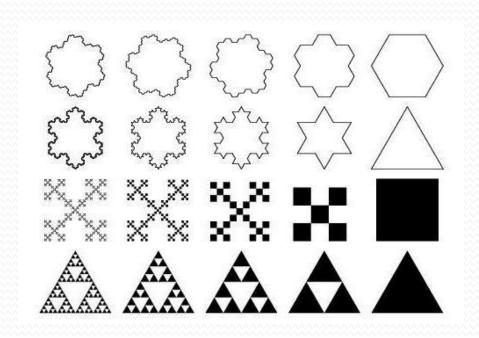
- Программная зависимость.
- Невозможно или нерационально создание сложных рисунков (фотографии).
- Недостаточны живописные возможности.
- Жесткость контуров и, следовательно, переходов.
- Недоступно большинство эффектов трансформации, разработанных для растровых редакторов.
- «Мозаичность» изображения с использованием цветов или тонов.
- Привязанность к условной координатной сетке при редактировании.
- Низкое качество градиентных заливок.

Фрактальная графика

Фрактал - это рисунок, который состоит из подобных между собой элементов. Существует большое количество графических изображений, которые являются фракталами: треугольник Серпинского, снежинка Коха, "дракон" Хартера-Хейтуея, множество Мандельброта. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений, ничего кроме формулы хранить не требуется. Только изменив коэффициенты уравнения, можно получить совершенно другое изображение.

Как правило, фракталы используются в качестве фона или эффектного слоя при создании коллажей, оформительских работ и даже рекламных публикаций. Кроме применения в традиционной двумерной компьютерной графике, они широко распространены и в сфере 3D. С помощью фракталов там создаются текстуры: карты светоотражения, прозрачности и даже рельефа поверхности.

Преимущества фрактальной графики

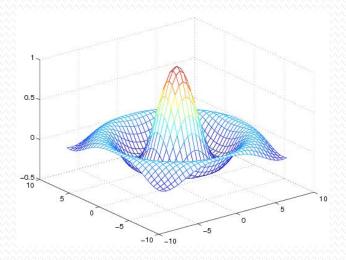


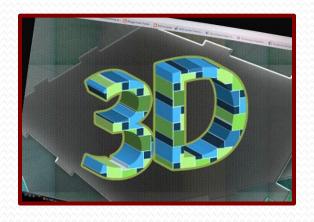
- Небольшой размер при масштабном рисунке.
- Нет конца масштабированию, сложность картинки можно увеличивать бесконечно.
- Нет другого такого же инструмента, который позволит создавать сложные фигуры.
- Реалистичность.
- Простота в создании работ.

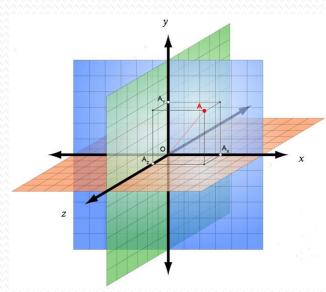
Недостатки

Во-первых, без компьютера здесь не обойтись. Чем длиннее количество повторений, тем больше загружается процессор. Соответственно, только качественное компьютерное оборудование способно справиться с построением сложных изображений.

Во-вторых, присутствуют ограничения в исходных математических фигурах. Некоторые изображения создать посредством фракталов не удастся.


Трёхмерная графика


Трёхмерная графика (3D-графика) изучает приёмы и методы создания объёмных моделей объектов, которые максимально соответствуют реальным. Такие объёмные изображения можно вращать и рассматривать со всех сторон. Для создания объёмных изображений используют разные графические фигуры и гладкие поверхности. При помощи их сначала создаётся каркас объекта, потом его поверхность покрывают материалами, визуально похожими на реальные. После этого делают осветление, гравитацию, свойства атмосферы или другие параметры пространства, в котором диться объект. Для двигающихся объектом вывают траекторию движения, скорость.


Преимущества трёхмерной графики

- Высокая доступность в сложных объектах. Сложные геометрические фигуры в формате 3D легко читаются и понятны.
- Достоинства при вращении предмета. Картинка поворачивается под углом, поэтому можно с легкостью увидеть, где оно находится и месторасположение прочих предметов.
- В формате 3D зритель мгновенно улавливает все пропорции предметов, их месторасположение в атмосфере
- Новые формы схем. Можно легко добавлять новые картинки в большом количестве, при этом вы не потеряете ни информативности, ни читаемости диаграммы.

Недостатки

Повышенные требования к аппаратной части компьютера, в частности к объему оперативной памяти, наличию свободного места на жестком диске и быстродействию процессора;

Необходимость большой подготовительной работы, но созданию моделей всех объектов сцены, которые могут попасть в поле зрения камеры, и по присвоению им материалов. Необходимость контроля за взаимным положением объектов в составе сцены, особенно при выполнении анимации. В связи с тем, что объекты трехмерной графики «бестелесны», легко допустить ошибочное проникновение одного объекта в другой или ошибочное отсутствие нужного контакта между объектами.

Современная компьютерная графика - это достаточно сложная, основательно проработанная и разнообразная научнотехническая дисциплина. Некоторые ее разделы, такие как геометрические преобразования, способы описания кривых и поверхностей, к настоящему времени уже исследованы достаточно полно.

Ряд областей продолжает активно

Ряд областей продолжает активно развиваться: методы растрового сканирования, удаление невидимых линий и

поверхностей, моделирование цвета и освещенности, текстурирование, создание эффекта прозрачности и полупрозрачности и др.

Интернет ресурсы:

http://it-dm.narod.ru/it DM/graph/it DM graph compare.html

http://school.ciit.zp.ua/paint-htm/grafik.htm

https://ru.wikipedia.org/wiki

http://bibliofond.ru/view.aspx?id=34972

http://fb.ru/article/228910/grafika-fraktalnaya-opisanie-primeryiformatyi-dostoinstva-i-nedostatki

http://en-ter.ru/kompyuternaya-grafika-1/preimushhestvatrexmernoj.html

http://davaiknam.ru/text/uchebnij-kurs-3d-modelirovanie-i-animaciya

http://www.intuit.ru/studies/courses/70/70/lecture/2092